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The spin-pair compositions at a given point of the position space are defined as the following ratios: that of
the parallel spin-pair concentration to the antiparallel spin-pair concentrationDanti(r ), to the total spin-pair
concentrationDtot(r ), and to the single spin-pair concentrationDs(r ). The spin-pair concentrations are calculated
by the integration of the pair functionsπRR(r1,r2), πRâ(r1,r2), πâR(r1,r2), andπââ(r1,r2) over an arbitrary volume
V(r ) around the reference pointr . Because the numbers of spin pairs are not proportional to the sampling
volume, the dependence of theD(r ) functions upon the sample sizeV(r ) has been studied. It is shown that
all D(r ) functions depend on the populationNh (r ) of the sample. ForNh ((r ) e 10-3, all D(r ) functions behave
as Nh 2/3(r ); therefore, size-independent spin-pair composition functions are defined ascπ(r ) ) Nh 2/3(r )D(r ).
Approximate expressions of thecπ(r ) functions are proposed, which enable the recovery of the electron
localization function of Becke and Edgecombe.

1. Introduction

The central concept in the chemical bond theory is that of
the electron pair, which was introduced by G. N. Lewis,1 19
years after the discovery of the electron. This concept is very
fruitful since it explains the stoichiometry of the most stable
molecules (with the help of the octet rule and that of the Lewis
structures) as well as their geometries, with the help of the
VSEPR model.2,3 In chemistry, an electron pair involves two
electrons of opposite spin. In this short communication, I
propose a simplified representation of the electrons in a molecule
in terms of two scalar fields, namely, the densityF(r ) and the
spin-pair compositioncπ(r ) that I will define later.

2. The Spin-Pair Composition

The electrons of an atom or of a molecule can be considered
as belonging to an inhomogeneous continuum (electron gas) in
the same manner a molecule of dioxygen belongs to the
atmospheric air. This inhomogeneous electron gas is character-
ized in each point of the position space of coordinatesr by its
densityF(r ) and by a dimensionless number, for example,cπ(r ),
which accounts for its local composition in terms of electron
pairs and is expected to reveal the inhomogeneity. This
representation relies on the statistical interpretation of quantum
mechanics, and therefore, bothF(r ) andcπ(r ) must be derived
from density functions.

The definition of the electron densityF(r ) is straightfor-
ward: it is the probability of finding any electron at the position
r and is given by

in whichxi denotes the set of positionsr i and spinσi coordinates
of the electron labeled byi, and the integration is performed
over the spin coordinates of all the electrons and over the
position coordinates of all the electrons except one. It can be

alternatively expressed as the expectation value of the density
operatorF̂(r ):

with

The electron density can be written as the sum of two
contributions arising from theR andâ spin electrons, i.e.,

The electron density contains most of the physical informa-
tion; knowing this information enables the determination of the
energy of aN-electron system in its ground state with the
necessary aid of the Hohenberg and Kohn theorem4 and the
determination of many linear response properties by making
use of the Hellmann-Feynman theorem.5,6 In the framework
of the conceptual density functional theory, the chemical
properties are related to other local functions, such as the
hardness, the softness, the Fukui function, and their local
versions,7-12 which appear to be energy second derivatives
which cannot be computed from the density itself. Paradoxically,
none of these reactivity indicators depends on the local spin
pairing. However, the concepts of spinphilicity and donicity have
recently been proposed as global reactivity indicators for spin-
catalyzed reactions.13

To get some insight onto the local pairing, it is useless to
consider the spin contributionsFR(r) andFâ(r) to the total density
as being local descriptors, because in closed-shell singlets (which
are the ground electronic states of a huge majority of chemical
systems), these two quantities are identically equal. Therefore,
the information on the pairing has to be extracted from the spin
components of the two-particle density distribution:

F(r ) ) N∫Ψ(x, x2, ...,xN)Ψ*(x, x2, ...,xN) dx′ dσ (1)

F(r ) ) 〈Ψ|F̂(r )|Ψ〉 (2)

F̂(r ) )∑
i)1

N

δ(r i - r ) (3)

F(r ) ) FR(r ) + Fâ(r ) (4)
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In eq 5, dx′′ indicates that the integration is performed over the
coordinates of all the electrons but two. The two-particle density
operator appearing in eq 6 is

Finally, in eq 7,πσσ(r ,r ′) represents the probability of finding
one electron of spinσ at r and another atr ′ and πσσ′(r ,r ′)
represents the probability of finding an electron of spinσ at r
and and another of spinσ′ at r ′.14 It is worth noting that the
Pauli principle prescribesπσσ(r ,r ) ) 0, whereasπσσ′(r ,r ) is
usually greater than zero. Unfortunately, these functions are
functions of the coordinates of two points, and it is therefore
necessary to lower this number to 1. This is done in the spirit
of Dobson’s interpretation of the Fermi hole curvature in terms
of “other” electrons found in a small neighborhood near a given
electron.15 This number is calculated by integrating the condi-
tional pair probabilities over a sphere of radiusR centered on
the reference electron.

In the present work, I consider the pair densities rather than
the conditional probabilities. The integrated pair density for
parallel spin electrons within a given finite sampling volume
V(r ) surrounding the reference pointr is

and that of antiparallel spin pairs is

and the sample populationNh (r ) is

In the limit of noninteracting electrons in a singlet state, the
number of antiparallel pairs is

The three functions

are dimensionless numbers which tend to zero in the region of

the perfect antiparallel pairing. They can be viewed as the ratios
of the parallel spin-pair concentration to the actual antiparallel
spin-pair concentrationDanti(r ), the actual total spin-pair con-
centrationDtot(r ), and the pair concentration of a single pair
Ds(r ). There is therefore a conceptual analogy with solution
chemistry, and the calculation ofNh ||(r ) andNh ⊥(r ) can be viewed
as a numerical titration. The definition of theD(r ) functions is
independent of electronic state of the system, of the nature of
the wave function, and of the way the calculation of this latter
function has been carried out. These functions are defined for
both exact and approximate wave functions, for both ground
and excited states, as well as for stationary or time-dependent
descriptions.

However, neitherNh ⊥(r ) nor Nh ||(r ) are proportional to the
sampling volume, and therefore, the actual values of theD(r )
functions depend on the sampling which is an epistemologically
uncomfortable position. In the independent-particle model, the
probability of finding two parallel spin electrons at a small
separation behaves as the square of the interparticle distance,
the interparticle distance being|r2 - r1|, whereas the antiparallel
spin probability is independent of this separation. Therefore,
within small volumes, theD(r ) functions are expected to scale
asV3/2(r ). Instead of the volume itself, the sample population
Nh (r ) can be considered for the scaling since

whereFj(r ) is the average density withinV(r ).
To verify this power law,Dtot(r ) and Ds(r ) have been

calculated with single determinental wave functions for repre-
sentative samples of points and for a selection of atoms and
molecules (for singletsDanti(r ) ) Ds(r ) with such wave
functions). For each point, the calculations are carried out for
15 trial populationsqi belonging to the range (10-10-10-3)
which determines the edgeai ) (qi/F(r ))1/3 of a cubic box
centered atr . Then, the exact populationNh (r ;qi) and the spin-
pair compositionsDtot(r ;qi) and Ds(r ;qi) are calculated. The
exponents ofNh (r ;qi) in the power law are determined by a least-
squares fit of

where cπ(r ) is the size-independent spin composition. The
exponentR is always close to its expectation2/3, and the
regression coefficientr2 is always close to 1 (typically,r2 ∼
0.99). Table 1 displays thecπ(r ), the exponentsR, and the
regression coefficientsr2 for Dtot andDs; the systems considered
are Ne (1S), Ar (1S), Kr (1S), and Cr (7S, MS ) 0, (3).

The numbers reported in Table 1 are not interesting by
themselves, but they should be considered as being the results
of numerical experiments demonstrating the reliability of eq 17,
at least in chemically significant regions. For all closed-shell
atoms and for theMS ) 0 component of the septuplet, theR )
2/3 law is verified for densitiesF(r ) greater than 10-4 au. The
noticeable deviations occur at lower densities because the size
of the sampling volume becomes too large and therefore
hampers the requirement of homogeneity of the sample. For
closed-shell systems thecπ(r ) functions calculated fromDtot(r )
and Ds(r ) have values very close together. In the case of the
chromium atom as expected from the definitions ofDtot(r ) and
Ds(r ) the values of the correspondingcπ(r )’s are very close for
MS ) 0 and significantly different forMS ) (3 in the regions

V(r ) )
Nh (r )

Fj(r )
(16)

D(r ;qi) ) Nh R(r ;qi)cπ(r ) (17)

π(r ,r ′) ) ∫∫ Ψ(x, x′, x3, ...,xN)Ψ*

(x, x′, x3, ...,xN) dx′′ dσ dσ′ (5)

) 〈Ψ|π̂(r ,r ′)|Ψ〉 (6)

) πRR(r ,r ′) + πRâ(r ,r ′) + πâR(r ,r ′) + πââ(r ,r ′) (7)

π̂(r ,r ′) )∑
i)1

N

∑
j*i

N

δ(r i - r )δ(r j - r ′) (8)

Nh || (r ) ) ∫V ∫V
πRR(r1,r2) dr1 dr2 + ∫V ∫V

πââ(r1,r2) dr1 dr2
(9)

Nh ⊥(r ) ) ∫V ∫V
πRâ(r1,r2) dr1 dr2 + ∫V ∫V

πâR(r1,r2) dr1 dr2
(10)

Nh (r ) ) ∫V
F(r1) dr1 (11)

Nh ⊥
0(r ) )1

2∫V
F(r1) dr1∫V

F(r2) dr2 ) 1
2

Nh 2(r ) (12)

Danti(r ) )
Nh || (r )

Nh ⊥(r )
(13)

Dtot(r ) )
Nh || (r )

Nh ⊥(r ) + Nh ||(r )
(14)

Ds(r ) ) 2
Nh || (r )

Nh (r )2
(15)
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of theM andN shells. For instance, theN shell structure is not
accounted for byDtot(r ).

3. Approximate Expressions and Electron Localization
Function

Approximate expressions of the differentcπ(r )’s would be
useful for practical applications. The sampling volume is chosen
as a cube of edgea centered atr . Within the sampling volume,
I assume that all the necessary quantities, namely,Nh (r ), Nh RR,
Nh Râ, Nh âR, andNh ââ, can be evaluated by their Taylor expansions
around the reference positionr limited to the first nonzero term,
i.e.,

wherePcond
σσ (r1,r2) is the conditional probability density

With these assumptions, one obtains

replacing a by (Nh (r )/F(r ))1/3 enables theDanti(r ) and Ds(r )
functions to be expressed as

Since Nh ⊥ and Nh || are in a6 and a8, respectively, the ap-
proximate expressions ofDanti andDtot are identical. It is worth
noting that theNh (r )2/3 factor explicitly appears in theses
approximate expressions. In the absence of spin polarization
(MS ) 0), FR(r ) ) Fâ(r ) ) 1/2F(r ) as well as the two conditional
probabilities are equal; therefore,Danti, Dtot, andDs have a unique
approximate expression which yields forcπ(r )

TABLE 1: Distance from the Nucleus r (bohr), Electron
Density G(r), Size-Independent Spin-Pair Compositionscπ(r),
Exponentsr, and Regression Coefficientsr2 of Dtot(r; qi) and
Ds(r; qi)

Dtot(r ) Ds(r )

r F(r ) cπ(r ) R r2 cπ(r ) R r2

Ne
0.00 590.4918273 0.003 0.6710 1.0000 0.003 0.6710 1.0000
0.20 14.5166518 0.813 0.6655 1.0000 0.816 0.6657 1.0000
0.50 2.2925161 0.692 0.6666 1.0000 0.696 0.6669 1.0000
0.60 1.7429237 0.485 0.6663 1.0000 0.486 0.6665 1.0000
0.70 1.2766312 0.413 0.6664 1.0000 0.414 0.6666 1.0000
1.40 0.1128045 0.582 0.6666 1.0000 0.584 0.6667 1.0000
2.10 0.0125334 1.245 0.6661 1.0000 1.252 0.6664 1.0000
2.70 0.0018051 2.762 0.6637 1.0000 2.799 0.6644 1.0000
3.10 0.0003666 5.135 0.6540 0.9996 5.290 0.6556 0.9997
3.50 0.0000565 10.500 0.6387 0.9987 10.911 0.6407 0.9989
4.20 0.0000011 16.156 0.5474 0.9870 17.830 0.5524 0.9885

Ar
0.00 3724.3711905 0.008 0.6723 0.9999 0.008 0.6723 0.9999
0.20 34.4140960 0.997 0.6662 1.0000 1.001 0.6665 1.0000
0.50 3.5739246 0.657 0.6662 1.0000 0.659 0.6664 1.0000
0.60 1.5374822 1.509 0.6651 1.0000 1.519 0.6655 1.0000
0.70 0.7980277 2.729 0.6648 1.0000 2.762 0.6655 1.0000
1.40 0.2236378 0.356 0.6665 1.0000 0.357 0.6667 1.0000
2.10 0.0460064 0.509 0.6670 1.0000 0.510 0.6672 1.0000
2.70 0.0111683 0.841 0.6663 1.0000 0.844 0.6665 1.0000
3.10 0.0043356 1.256 0.6657 1.0000 1.263 0.6660 1.0000
3.50 0.0017207 1.939 0.6646 1.0000 1.956 0.6651 1.0000
4.20 0.0003592 3.863 0.6613 0.9999 3.935 0.6623 0.9999
5.00 0.0000534 8.639 0.6585 0.9999 8.824 0.6597 0.9999

Kr
0.00 31257.2889808 0.013 0.6721 0.9999 0.013 0.6721 0.9999
0.20 78.4345150 0.890 0.6660 1.0000 0.894 0.6662 1.0000
0.50 11.2514215 0.508 0.6666 1.0000 0.510 0.6668 1.0000
0.60 6.0812935 0.556 0.6661 1.0000 0.557 0.6663 1.0000
0.70 3.1320538 0.757 0.6660 1.0000 0.759 0.6662 1.0000
1.40 0.2316985 0.736 0.6663 1.0000 0.740 0.6666 1.0000
2.10 0.0620067 0.429 0.6666 1.0000 0.430 0.6667 1.0000
2.70 0.0176109 0.625 0.6664 1.0000 0.627 0.6666 1.0000
3.10 0.0074308 0.864 0.6662 1.0000 0.867 0.6664 1.0000
3.50 0.0031278 1.242 0.6657 1.0000 1.249 0.6660 1.0000
4.20 0.0007179 2.418 0.6638 1.0000 2.445 0.6644 1.0000
5.00 0.0001356 4.810 0.6590 0.9998 4.930 0.6604 0.9996

Cr (7S,MS ) 0)
0.00 9108.2991425 0.011 0.6726 0.9999 0.011 0.6726 0.9999
0.20 62.1574972 0.482 0.6663 1.0000 0.484 0.6665 1.0000
0.50 3.2938033 2.169 0.6656 1.0000 2.190 0.6661 1.0000
0.60 2.5464580 1.196 0.6665 1.0000 1.202 0.6668 1.0000
0.70 2.1224464 0.693 0.6668 1.0000 0.696 0.6671 1.0000
1.40 0.2307632 0.940 0.6663 1.0000 0.943 0.6665 1.0000
2.10 0.0309829 2.294 0.6656 1.0000 2.318 0.6661 1.0000
2.70 0.0090011 2.970 0.6654 1.0000 3.009 0.6662 1.0000
3.10 0.0043535 3.531 0.6645 1.0000 3.586 0.6654 1.0000
3.50 0.0022916 3.727 0.6640 1.0000 3.789 0.6649 1.0000
4.20 0.0009586 1.572 0.6682 1.0000 1.583 0.6686 1.0000
5.00 0.0004007 0.171 0.6785 0.9996 0.171 0.6785 0.9996

Cr (7S,MS ) (3)
0.00 9108.2991425 0.011 0.6726 0.9999 0.011 0.6726 0.9999
0.20 62.1574972 0.482 0.6663 1.0000 0.484 0.6665 1.0000
0.50 3.2938033 2.377 0.6655 1.0000 2.280 0.6661 1.0000
0.60 2.5464580 1.382 0.6665 1.0000 1.299 0.6668 1.0000
0.70 2.1224464 0.826 0.6667 1.0000 0.776 0.6670 1.0000
1.40 0.2307632 1.491 0.6661 1.0000 1.215 0.6665 1.0000
2.10 0.0309829 9.400 0.6630 1.0000 3.703 0.6660 1.0000
2.70 0.0090011 43.642 0.6515 0.9994 5.434 0.6661 1.0000
3.10 0.0043535 111.736 0.6204 0.9952 6.835 0.6653 1.0000
3.50 0.0022916 149.773 0.5504 0.9759 7.435 0.6648 1.0000
4.20 0.0009586 112.082 0.4747 0.9441 3.155 0.6686 1.0000
5.00 0.0004007 133.231 0.5080 0.9595 0.337 0.6787 0.9996

Fσ(r1) ) Fσ(r ) (18)

πσσ′(r1,r2) ) Fσ(r )Fσ′(r ) (19)

πσσ(r1,r2) ) 1
2

Fσ(r1)(∂2 Pcond
σσ (r1,r2)

∂x2
2 |x2)x1)x(x2 - x1)

2 +

∂
2 Pcond

σσ (r1,r2)

∂y2
2 |y2)y1)y(y2 - y1)

2 +

∂
2 Pcond

σσ (r1,r2)

∂z2
2 |z2)z1)z(z2 - z1)

2) (20)

Pcond
σσ (r1,r2) )

πσσ(r1,r2)

Fσ(r1)
(21)

Nh (r ) ≈ F(r )a3 (22)

Nh σ(r ) ≈ Fσ(r )a3 (23)

Nh ⊥ ≈ 2Nh Râ ) 2Nh R(r )Nh â(r ) ) 2FR(r )Fâ(r )a6 (24)

Nh || ≈ 1
24

[FR(r )∇2 Pcond
RR (r1,r2)|r1)r2)r +

Fâ(r )∇2Pcond
ââ (r1,r2)|r1)r2)r]a

8 (25)

Danti(r ) ≈ Nh 2/3(r )(FR(r )∇2 Pcond
RR (r1,r2)+Fâ(r )∇2 Pcond

ââ (r1,r2))

12F2/3(r )FR(r )Fâ(r )
(26)

Ds(r ) ≈ Nh 2/3(r )(FR(r )∇2 Pcond
RR (r1,r2)+Fâ(r )∇2 Pcond

ââ (r1,r2))

3F8/3(r )
(27)

cπ(r ) ≈ ∇2 Pcond
RR (r1,r2)

3F5/3(r )
(28)
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This approximate expression ofcπ(r ) is within a constant
identical to theDσ/D°σ quantity of the electron localization
function (ELF) of Becke and Edgecombe.16 Moreover, an
interpretation of the ELF in terms of the integrated conditional
probability has already been given by Dobson.15,17

Figure 1 compares the profiles obtained for the Ne, Ar, and
Kr atoms and the methyl chloride molecule with ELF and with
1/(1 + cπ

2(r )). The functioncπ(r ) has been calculated as the
average ofNh -2/3(r ;qi) × Ds(r ;qi) determined with the 15 trial
populations already used in the previous section, provided the
sampling volume population is less than 0.001e:

The two curves almost coincide for the four systems. Figure 2
displays the profiles calculated with the ELF, an open-shell

alternative of ELF deduced from eq 27, i.e., with

and thecπ functions corresponding toDtot andDs. As expected,
for MS ) 0, the four curves coincide; forMS ) (3, the cπ
function ofDtot does not show the singly occupied valence shell,
whereas the othercπ and the modified ELF are in excellent
agreement. It is important to mention that the boundary of the
M andN shells is found at 3.4 au for both components of the
multiplet, and therefore, at least for the present example, the
shell population is independent of the actual value ofMS.

4. Conclusions

The size-independent spin-pair composition function has a
clear meaning as a local indicator of chemical bonding. This

Figure 1. Localization function profiles of (a) Ne, (b) Ar, (c) Kr, and (d) CH3Cl calculated with (full line) ELF and (dashed line)cπ(r ). For CH3Cl,
the functions are plotted along the C-Cl bond.

Figure 2. Localization function profiles of (a) Cr (7S) MS ) 0 and (b)MS ) (3 calculated with the (full line) standard ELF function, the modified
ELF function derived from (dashed-dotted line) eq 27, the (dotted line)cπ(r ) function calculated fromDtot, and (dashed line)cπ(r ) calculated from
Ds.

cπ(r ) )
1

n
∑
i)1

n

Nh -2/3(r ;qi)Ds(r ;qi) (29)

Dσ

D°σ
)

FR(r )∇2 Pcond
RR (r1,r2)+Fâ(r )∇2 Pcond

ââ (r1,r2)

3F8/3(r )
(30)
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function relies on a chemical approach of the nature of the
electron cloud in terms of parallel and antiparallel spin-pair
concentrations. It can be safely evaluated within the chemically
relevant regions of the molecular space, i.e., where the electron
density is large enough to avoid numerical noise (F(r ) > 10-3).
The ELF function which is closely related tocπ(r) is much easier
to evaluate and to differentiate, because it has a compact
analytical form in terms of the molecular orbitals, whereascπ(r )
requires the performance of six-dimensional integrations over
the sampling volumeV. In all practical applications, it is
therefore worthwhile to use ELF instead ofcπ(r ). As shown
for the Cr atom, eq 30 enables the derivation of a localization
function, which is the ELF when the spin density is zero.
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(5) Hellmann, H.Einführung in die Quantenchemie; Franz Deuticke:

Vienna, 1937.
(6) Feynman, R. P.Phys. ReV. 1939, 56, 340.
(7) Parr, R. G.; Pearson, R. G.J. Am. Chem. Soc.1983, 105, 7512.
(8) Yang, W.; Parr, R. G.Proc. Natl. Acad. Sci. U.S.A.1985, 82, 6723.
(9) Parr, R. G.; Yang, W.J. Am. Chem. Soc.1984, 106, 4049.

(10) Ayers, P. W.; Levy, M.Theor. Chem. Acc.2000, 103, 353.
(11) Fukui, K.; Yonezawa, T.; Shinghu, H.J. Chem. Phys.1972, 20,

722.
(12) Berkowitz, M.; Ghosh, S. K.; Parr, R. G.J. Am. Chem. Soc.1985,

107, 6811.
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