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The Spin-Pair Compositions as Local Indicators of the Nature of the Bonding
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The spin-pair compositions at a given point of the position space are defined as the following ratios: that of
the parallel spin-pair concentration to the antiparallel spin-pair concentrBtiqfr), to the total spin-pair
concentratiorDy(r), and to the single spin-pair concentratidgr). The spin-pair concentrations are calculated

by the integration of the pair functiomg®(r ,r,), 7 (r1,r o), 7X(r 1.1 2), ands(r ,r ) over an arbitrary volume

V(r) around the reference point Because the numbers of spin pairs are not proportional to the sampling
volume, the dependence of th¥r) functions upon the sample six4r) has been studied. It is shown that

all D(r) functions depend on the populatidifr) of the sample. FoN((r) < 1073, all D(r) functions behave

as N?3(r); therefore, size-independent spin-pair composition functions are definegras= N?3(r)D(r).
Approximate expressions of the(r) functions are proposed, which enable the recovery of the electron
localization function of Becke and Edgecombe.

1. Introduction alternatively expressed as the expectation value of the density
operatorp(r):
The central concept in the chemical bond theory is that of
the electron pair, which was introduced by G. N. Ledis9 p(r) = [Wp(r) WO (2)

years after the discovery of the electron. This concept is very

fruitful since it explains the stoichiometry of the most stable jith

molecules (with the help of the octet rule and that of the Lewis

structures) as well as their geometries, with the help of the N

VSEPR modef:? In chemistry, an electron pair involves two pr)=y o@,—r) (3)
electrons of opposite spin. In this short communication, | =

propose a simplified representation of the electrons in a molecule

in terms of two scalar fields, namely, the density) and the The electron density can be written as the sum of two
spin-pair compositiore,(r) that | will define later. contributions arising from the. andj spin electrons, i.e.,

2. The Spin-Pair Composition p(r) = p%(r) + o (r) (4)

The electrons of an atom or of a molecule can be considered The electron density contains most of the physical informa-
as belonging to an inhomogeneous continuum (electron gas) intion; knowing this information enables the determination of the
the same manner a molecule of dioxygen belongs to the energy of aN-electron system in its ground state with the
atmospheric air. This inhomogeneous electron gas is characternecessary aid of the Hohenberg and Kohn theérand the
ized in each point of the position space of coordinatéy its determination of many linear response properties by making
densityp(r) and by a dimensionless number, for exampl¢r,), use of the HellmannFeynman theorerh® In the framework
which accounts for its local composition in terms of electron of the conceptual density functional theory, the chemical
pairs and is expected to reveal the inhomogeneity. This properties are related to other local functions, such as the
representation relies on the statistical interpretation of quantumhardness, the softness, the Fukui function, and their local
mechanics, and therefore, bifr) andc,(r) must be derived ~ versions|'? which appear to be energy second derivatives
from density functions. which cannot be computed from the density itself. Paradoxically,
none of these reactivity indicators depends on the local spin
pairing. However, the concepts of spinphilicity and donicity have
recently been proposed as global reactivity indicators for spin-
catalyzed reactions.

To get some insight onto the local pairing, it is useless to

p(r) = Nf‘P(x, X s X)) PH(X, X, - %) X do - (1) consider the spin contributiop&(r) andp’(r) to the total density
as being local descriptors, because in closed-shell singlets (which
in which x; denotes the set of positionsand sping; coordinates are the ground electronic states of a huge majority of chemical
of the electron labeled by and the integration is performed systems), these two quantities are identically equal. Therefore,
over the spin coordinates of all the electrons and over the the information on the pairing has to be extracted from the spin
position coordinates of all the electrons except one. It can be components of the two-particle density distribution:
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The definition of the electron density(r) is straightfor-
ward: itis the probability of finding any electron at the position
r and is given by
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A r) = [ [ WX, X, oy X) P
(X X, Xg, ..., %) X" do do’ (5)

(6)
)

In eq 5, &' indicates that the integration is performed over the
coordinates of all the electrons but two. The two-particle density
operator appearing in eq 6 is

N
a(r,r) :Z

Finally, in eq 7,79°(r,r") represents the probability of finding
one electron of spirv at r and another at’ and z°7(r,r')
represents the probability of finding an electron of spiat r

and and another of spio at r’.2* It is worth noting that the
Pauli principle prescribeg(r,r) = 0, whereast? (rr) is
usually greater than zero. Unfortunately, these functions are
functions of the coordinates of two points, and it is therefore
necessary to lower this number to 1. This is done in the spirit
of Dobson'’s interpretation of the Fermi hole curvature in terms
of “other” electrons found in a small neighborhood near a given
electront® This number is calculated by integrating the condi-
tional pair probabilities over a sphere of radRentered on
the reference electron.

In the present work, | consider the pair densities rather than
the conditional probabilities. The integrated pair density for
parallel spin electrons within a given finite sampling volume
V(r) surrounding the reference pointis

= [W|a(r,r)|wd
=72 r') + 7% 1) + A4 ) + AP )

N
Z(S(ri — )o@, —r’)

=

8)

Ny @)= [, [, aryry) drydr, + [0 [0 a%(ryr) drlo(lgz)
and that of antiparallel spin pairs is
No(r) = [, f,a%(rpry) drydr, + [ [0 7% (ryr,) drl(dlroz)
and the sample populatidi(r) is

N(r) = fio(ry) dr, 11)

In the limit of noninteracting electrons in a singlet state, the
number of antiparallel pairs is

N(r) =3 fyprs) oy L plr) dr, = SREE)  (12)
The three functions
_ N, (r)
Danti(r) - ND(F) (13)
_ N, (r)
Diodr) = ND(r) T NH(r) (14)
Dyr) = 222—:;2) (15)

are dimensionless numbers which tend to zero in the region of
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the perfect antiparallel pairing. They can be viewed as the ratios
of the parallel spin-pair concentration to the actual antiparallel
spin-pair concentratioDani(r), the actual total spin-pair con-
centrationD(r), and the pair concentration of a single pair
D«(r). There is therefore a conceptual analogy with solution
chemistry, and the calculation bf(r) andNg(r) can be viewed

as a numerical titration. The definition of tiXr) functions is
independent of electronic state of the system, of the nature of
the wave function, and of the way the calculation of this latter
function has been carried out. These functions are defined for
both exact and approximate wave functions, for both ground
and excited states, as well as for stationary or time-dependent
descriptions.

However, neitheN(r) nor Ny(r) are proportional to the
sampling volume, and therefore, the actual values ofCx(rg
functions depend on the sampling which is an epistemologically
uncomfortable position. In the independent-particle model, the
probability of finding two parallel spin electrons at a small
separation behaves as the square of the interparticle distance,
the interparticle distance beitig — r1|, whereas the antiparallel
spin probability is independent of this separation. Therefore,
within small volumes, th®(r) functions are expected to scale
asVe2(r). Instead of the volume itself, the sample population
N(r) can be considered for the scaling since

N()

V=20

(16)

wherep(r) is the average density with(r).

To verify this power law,Di(r) and Dgr) have been
calculated with single determinental wave functions for repre-
sentative samples of points and for a selection of atoms and
molecules (for singletsDani(r) = Ds(r) with such wave
functions). For each point, the calculations are carried out for
15 trial populationsg; belonging to the range (18°—1073%)
which determines the edga = (q/p(r))*® of a cubic box
centered at. Then, the exact populatidi(r;q;) and the spin-
pair compositionsDy(r;0;) and Ds(r;q;) are calculated. The
exponents oN(r;q;) in the power law are determined by a least-
squares fit of

D(r;a) = N*(riq)c,(r) a7
where c,(r) is the size-independent spin composition. The
exponento. is always close to its expectatiot;, and the
regression coefficient? is always close to 1 (typically;? ~
0.99). Table 1 displays the,(r), the exponentsy, and the
regression coefficient® for Dyt andDs; the systems considered
are Ne {S), Ar (1S), Kr ({S), and Cr (S, Ms = 0, £3).

The numbers reported in Table 1 are not interesting by
themselves, but they should be considered as being the results
of numerical experiments demonstrating the reliability of eq 17,
at least in chemically significant regions. For all closed-shell
atoms and for théls = 0 component of the septuplet, the=
23 law is verified for densitiep(r) greater than 10 au. The
noticeable deviations occur at lower densities because the size
of the sampling volume becomes too large and therefore
hampers the requirement of homogeneity of the sample. For
closed-shell systems tlog(r) functions calculated frorDi(r)
and Dg(r) have values very close together. In the case of the
chromium atom as expected from the definition®gjfi(r) and
D4(r) the values of the corresponding(r)’s are very close for
Ms = 0 and significantly different foMs = +3 in the regions
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TABLE 1: Distance from the Nucleusr (bohr), Electron
Density p(r), Size-Independent Spin-Pair Compositionsc.(r),
Exponentsa, and Regression Coefficients? of Dy(r; ¢) and

D(r; @)

Drot(r) Dy(r)

r o(r) C(r) a r2 C(r) o r2

Ne
0.00 590.4918273 0.003 0.6710 1.0000 0.003 0.6710 1.0000
0.20 145166518 0.813 0.6655 1.0000 0.816 0.6657 1.0000 .
0.50 2.2925161 0.692 0.6666 1.0000 0.696 0.6669 1.0000
0.60 1.7429237  0.485 0.6663 1.0000 0.486 0.6665 1.0000
0.70 1.2766312 0.413 0.6664 1.0000 0.414 0.6666 1.0000
1.40 0.1128045 0.582 0.6666 1.0000 0.584 0.6667 1.0000
2.10 0.0125334 1.245 0.6661 1.0000 1.252 0.6664 1.0000
2.70 0.0018051  2.762 0.6637 1.0000 2.799 0.6644 1.0000
3.10 0.0003666 5.135 0.6540 0.9996 5.290 0.6556 0.9997
3.50 0.0000565 10.500 0.6387 0.9987 10.911 0.6407 0.9989
4.20 0.0000011 16.156 0.5474 0.9870 17.830 0.5524 0.9885

Ar
0.00 3724.3711905 0.008 0.6723 0.9999 0.008 0.6723 0.9999
0.20 34.4140960 0.997 0.6662 1.0000 1.001 0.6665 1.0000
0.50 3.5739246 0.657 0.6662 1.0000 0.659 0.6664 1.0000
0.60 1.5374822 1.509 0.6651 1.0000 1.519 0.6655 1.0000
0.70 0.7980277 2.729 0.6648 1.0000 2.762 0.6655 1.0000
1.40 0.2236378 0.356 0.6665 1.0000 0.357 0.6667 1.0000
2.10 0.0460064 0.509 0.6670 1.0000 0.510 0.6672 1.0000
2.70 0.0111683  0.841 0.6663 1.0000 0.844 0.6665 1.0000
3.10 0.0043356 1.256 0.6657 1.0000 1.263 0.6660 1.0000
3.50 0.0017207 1.939 0.6646 1.0000 1.956 0.6651 1.0000
4.20 0.0003592 3.863 0.6613 0.9999 3.935 0.6623 0.9999
5.00 0.0000534  8.639 0.6585 0.9999 8.824 0.6597 0.9999

Kr
0.00 31257.2889808  0.013 0.6721 0.9999 0.013 0.6721 0.9999
0.20 78.4345150 0.890 0.6660 1.0000 0.894 0.6662 1.0000
0.50 11.2514215 0.508 0.6666 1.0000 0.510 0.6668 1.0000
0.60 6.0812935 0.556 0.6661 1.0000 0.557 0.6663 1.0000
0.70 3.1320538 0.757 0.6660 1.0000 0.759 0.6662 1.0000
1.40 0.2316985 0.736 0.6663 1.0000 0.740 0.6666 1.0000
2.10 0.0620067  0.429 0.6666 1.0000 0.430 0.6667 1.0000
2.70 0.0176109 0.625 0.6664 1.0000 0.627 0.6666 1.0000
3.10 0.0074308 0.864 0.6662 1.0000 0.867 0.6664 1.0000
3.50 0.0031278 1.242 0.6657 1.0000 1.249 0.6660 1.0000
4.20 0.0007179  2.418 0.6638 1.0000 2.445 0.6644 1.0000
5.00 0.0001356  4.810 0.6590 0.9998 4.930 0.6604 0.9996

Cr ('S, Ms = 0)
0.00 9108.2991425 0.011 0.6726 0.9999 0.011 0.6726 0.9999
0.20 62.1574972  0.482 0.6663 1.0000 0.484 0.6665 1.0000
0.50 3.2938033 2.169 0.6656 1.0000 2.190 0.6661 1.0000
0.60 2.5464580 1.196 0.6665 1.0000 1.202 0.6668 1.0000
0.70 2.1224464  0.693 0.6668 1.0000 0.696 0.6671 1.0000
1.40 0.2307632  0.940 0.6663 1.0000 0.943 0.6665 1.0000
2.10 0.0309829  2.294 0.6656 1.0000 2.318 0.6661 1.0000
2.70 0.0090011  2.970 0.6654 1.0000 3.009 0.6662 1.0000
3.10 0.0043535 3.531 0.6645 1.0000 3.586 0.6654 1.0000
3.50 0.0022916 3.727 0.6640 1.0000 3.789 0.6649 1.0000
4.20 0.0009586 1.572 0.6682 1.0000 1.583 0.6686 1.0000
5.00 0.0004007 0.171 0.6785 0.9996 0.171 0.6785 0.9996
Cr ('S,Ms = £3)

0.00 9108.2991425 0.011 0.6726 0.9999 0.011 0.6726 0.9999
0.20 62.1574972  0.482 0.6663 1.0000 0.484 0.6665 1.0000
0.50 3.2938033 2.377 0.6655 1.0000 2.280 0.6661 1.0000
0.60 2.5464580 1.382 0.6665 1.0000 1.299 0.6668 1.0000
0.70 2.1224464 0.826 0.6667 1.0000 0.776 0.6670 1.0000
1.40 0.2307632 1.491 0.6661 1.0000 1.215 0.6665 1.0000
2.10 0.0309829 9.400 0.6630 1.0000 3.703 0.6660 1.0000
2.70 0.0090011 43.642 0.6515 0.9994 5.434 0.6661 1.0000
3.10 0.0043535 111.736 0.6204 0.9952 6.835 0.6653 1.0000
3.50 0.0022916 149.773 0.5504 0.9759 7.435 0.6648 1.0000
4.20 0.0009586 112.082 0.4747 0.9441 3.155 0.6686 1.0000
5.00 0.0004007 133.231 0.5080 0.9595 0.337 0.6787 0.9996

of theM andN shells. For instance, thé shell structure is not
accounted for byDu(r).
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3. Approximate Expressions and Electron Localization
Function

Approximate expressions of the differegy(r)’'s would be
useful for practical applications. The sampling volume is chosen
as a cube of edgacentered at. Within the sampling volume,
| assume that all the necessary quantities, nam(s), N,

N3, Nfe, andNP#, can be evaluated by their Taylor expansions
around the reference positiorimited to the first nonzero term,
ie.,

p°(ry) = p°(r) (18)
77 (r k) = p°(n)p’ (r) 19)
00D =560 % i
% vy Yo = V) +
M‘é Az~ 7] (20)

whereP;,{r1.r2) is the conditional probability density

Pt i) =t @
p7(ry)
With these assumptions, one obtains
N(r) ~ p(r)a’ (22)
N’(r) ~ p°(r)a’ (23)
Ny~ 2NY = 2N*(r)NP(r) = 20%(n)o’(a®  (24)

|| 24[10 (r)V ngno(rllr2)|r1=r2=r+

(0 VPPodr 11 Dl = ~18° (25)

replacinga by (N(r)/p(r))¥® enables theDan(r) and Dg(r)
functions to be expressed as

NZ/S(r)(P (I’)V Pcono(rl’rz)_i_io/;(r)V conc(rl'rZ))
120%%(r)p*(r)e’(r)

Danti(r) ~
(26)
PeondT 1,r2)+pﬂ(r)V2 ngnt‘r 112)
305%(r)

N?%(r)(p"“(r)V*

D) ~
(27)

Since N and N, are in @ and a8, respectively, the ap-
proximate expressions @f,ni andDyor are identical. It is worth
noting that theN(r)23 factor explicitly appears in theses
approximate expressions. In the absence of spin polarization
(Ms = 0), p*(r) = p#(r) = Y2p(r) as well as the two conditional
probabilities are equal; therefoisns, Diot, andDs have a unique
approximate expression which yields fo(r)

2
ch()lnc(r l'r 2)

(28)
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Figure 1. Localization function profiles of (a) Ne, (b) Ar, (c) Kr, and (d) @& calculated with (full line) ELF and (dashed line)Xr). For CHCI,
the functions are plotted along the-ClI bond.
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Figure 2. Localization function profiles of (a) CF§) Ms = 0 and (b)Ms = 43 calculated with the (full line) standard ELF function, the modified
ELF function derived from (dashedlotted line) eq 27, the (dotted line)(r) function calculated fronDy, and (dashed ling),(r) calculated from
Ds.

This approximate expression af(r) is within a constant alternative of ELF deduced from eq 27, i.e., with
identical to theD,/D; quantity of the electron localization - 2 8
function (ELF) of Becke and EdgecombeMoreover, an D,  p(r)V2Paondr 11 )+ (1) V2 P {111 )
interpretation of the ELF in terms of the integrated conditional D_f; - 3p8’3(r)
probability has already been given by Dob38#’

Figure 1 compares the profiles obtained for the Ne, Ar, and and thec, functions corresponding 1, andDs. As expected,
Kr atoms and the methyl chloride molecule with ELF and with for Ms = 0, the four curves coincide; favls = £3, thec,
1/(1 + c;A(r)). The functionc,(r) has been calculated as the function of Dy does not show the singly occupied valence shell,
average ofN~23(r:q) x D«(r;q) determined with the 15 trial ~ whereas the othet, and the modified ELF are in excellent
populations already used in the previous section, provided theagreement. It is important to mention that the boundary of the
sampling volume population is less than 0.601 M andN shells is found at 3.4 au for both components of the
multiplet, and therefore, at least for the present example, the
shell population is independent of the actual valuévigf

(30)

1"
c(r) ==Y N"?%r;q)Dy(r;q) (29)
ni= 4. Conclusions

The two curves almost coincide for the four systems. Figure 2  The size-independent spin-pair composition function has a
displays the profiles calculated with the ELF, an open-shell clear meaning as a local indicator of chemical bonding. This
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